Tetrahedron Letters No. 4, pp 327 - 330, 1974. Pergamon Press. Printed in Great Britain.

NMR STUDIES OF BRIDGED RING SYSTEMS. XVIII. REMARKABLE STERIC Y EFFECT UPON ¹³C CHEMICAL SHIFTS IN TRICYCLO[3.2.1.0²,⁴]OCTENES AND ITS APPLICATION TO ¹³C SIGNAL ASSIGNMENT OF 9-ISOPROPYLIDENEBENZONORBORNENE DERIVATIVES

Kazuo Tori*, Masako Ueyama, Teruji Tsuji, Hiromu Matsumura, and Hiroshi Tanida

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan

and

Hiizu Iwamura

Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113 Japan

and

Katsuhiko Kushida, Toshiaki Nishida, and Shiroh Satoh

Nippon Electric Varian, Ltd., Azabudai Bldg., Azabu-Iigura-machi, Minato-ku, Tokyo, 106 Japan

(Received in Japan 16 November 1973; received in UK for publication 10 December 1973)

In the course of NMR studies of anisotropic shielding effects exerted by a cyclopropane ring,¹ we have found that the $H_{c(syn)}$ signal in the ¹H NMR spectrum of tricyclo[3.2.1.0^{2,4-exo}] oct-6-ene (2) is only slightly shifted from the position of that in norbornene (1), contrary to the expectation that the ¹H signal should be shifted considerably upfield by the cyclopropane anisotropy.¹ This fact may result from the strong steric compression (van der Waals interaction)² between the $H_{c(syn)}$ and the $H_{h(endo)}$ of the cyclopropane

i)H H(syn) H

describe an application of this effect to ¹³C signal assignments of some 9-isopropylidenebenzonorbornene derivatives $(\underline{6-9})$.

Table 1 lists the data obtained from natural-abundance ¹H-noise-decoupled ¹³C FT NMR spectra in CDCl₃

at 15.1 MHz⁺ together with the signal shift values due to introduction of a cyclopropane ring into the bicyclo-[2.2.1]heptane skeleton. The signals were assigned by using the single-frequency off-resonance ¹H-decoupling technique and known chemical-shift rules.³

As can be seen from Table 1, the C_c signal was shifted remarkably by -11.1 ppm from 1 to 2, whereas it moved downfield by +15.2 ppm from 1 to 3. Similarly, the C_d signal was shifted by -4.8 ppm from 1 to 3 and by +5.9 ppm from 1 to 2. These upfield shifts apparently due to the steric γ -effects³ become much more conspicuous when the spectra of 2 and 3 are directly compared; the steric effects upon the C_c and the C_d signals amount to -26.3 and -10.7 ppm, respectively.[‡] A similar steric γ shift of -12.1 ppm was also observed on the C_c signal from 4 to 5.

In comprehensive ¹³C NMR studies on a number of norbornane and norbornene derivatives already reported,⁴⁻⁷ various effects of several substituents on chemical shifts were examined in detail. The largest γ -effect reported for a methyl substitution is -7.7 ppm on the C₆ signal by a C₂(endo)-methyl substituent in norbornane.^{4,7} Thus, it should be emphasized that the steric γ shifts presented here are extraordinarily large. The shifts observed for the C_c signal obviously result from the strong steric interaction of H_c(syn) with H_h(endo); that observed for the C_d signal can be attributed to the steric repulsion between the π electrons and H_h(endo), as suggested previously.⁴

Table 2 lists the ¹H NMR data[†] on 1-5. The former compression effect is reflected in the slight differences in chemical shifts of $H_{c(syn)}$ between 1 and 2 and between 4 and 5, as described earlier. However, the H_d signal in 3 seems not to suffer the steric compression shift from the $H_{h(endo)}$; this fact confirms that a direct interaction between the H_d and the $H_{h(endo)}$ is not required to produce the upfield shift of the C_d signal mentioned above. The $H_{c(syn)}$ signals have been reported to be much less shielded (+0.45 ppm) by an aziridine and an oxirane ring introduction into 1.⁸. These larger shifts are due to not only the steric compression of the hetero atoms but also to other deshielding effects arising from their lone-pair electrons.⁸ Other signal shifts

[†] The ¹³C FT NMR spectra⁴ were taken with a Varian NV-14 FT spectrometer in the CDCl₃-locked mode at 15.1 MHz. Sample concentrations were about 1 M in CDCl₃ containing TMS as an internal reference. The ¹H NMR spectra were recorded on a Varian HA-100 spectrometer in the frequency-swept and TMS-locked mode at 100 MHz. Sample concentrations were about 0.5 M in CCl₄. The ¹H spectra were analyzed using an LAOCN 3 computer program. The chemical shifts are expressed by δ and an upfield shift has a negative value. Accuracies are within ±0.1 and -0.01 ppm for ¹³C and ¹H chemical shifts, respectively.

[‡] Anisotropic shielding effects of the cyclopropane ring on C_c and C_d are expected to amount to only 1 ppm at the most in view of the size of the effects upon the protons in these compounds.¹

No.	Compound		Ca	СЬ	C _c	Са	Ce	_C _f	Сg	Ch	с _і	c _j
Û	(anti)H H(syn) H(exo) d J H(endo)	۶c	41.8 42.2 <u>ª</u> 42.0 <u>b</u> 41.8 ^c	24.6 25.5 <u>a</u> 24.8 <u>b</u> 24.6 ^c	48.5 48.8 <u>ª</u> 48.8 48.5 48.5	135.2 135.5 <u>8</u> 135.8 135.2 135.2	-				- - -	- - -
(2)	A b	⁸ c	41.4	21.9	37.4	141.1	-	-	-	19.2	-	-
	(<u>2</u>)-(<u>1</u>)	∆δ(ppm)	-0.4	-2.7	-11.1	5.9	-	-	-	-	-	-
(3)	d	δ _C	42.3	12.3	63.7	130.4	-	-	-	17.1	~	-
	(<u>3</u>)-(<u>1</u>)	∆δ(pp m)	0.5	-12.3	15.2	-4.8	-	-	-		-	-
(4)	g the a b	^٤ с	43.7	27.1	49.2	-	147.9	125.4	120.3	-	-	-
(5) ~	g	⁸ с	42.8	20.5	37.1	-	151.5	124.8	120.6	14.9	-	-
	۲ (<u>5</u>)-(4)	Δδ(ppm)	-0.9	-6.6	-12.1	-	3.6	-0.6	0.3	-	-	-
(6)	g f e a b	^б с	43.9	27.1	148.6	-	147.7	125.4	119.9	-	110.8	19.8
(<u>7</u>)	i j c h	δ _C	45.7	20.5	140.6	-	150.3	124.8	120.2	15.7	116.5	19.5
	f (7)-(6)	∆δ(ppm)	1.8	-6.6	-8.0	-	2.6	-0.6	0.3	-	5.7	-0.3
(<u>8</u>)	g d d	δ _C	50.8	-	161.9	142.9	152.6	124.4	120.8	-	102.2	18.9
	(8)-(6)	∆δ(ppm)	6.9	-	13.3	-	4.9	-1.0	0.9	-	-8.6	-0.9
(2)		δ _C	52.3	-	160.1	-	149.5	125.1	121.1	-	107.7	19.3
	. (9)-(6)	<u>Δ</u> δ(ppm)	8.4	-	11.5	-	1.8	-0.3	1.2	-	-3.1	-0.5

 $\frac{a}{c}$ Concentrated solution in dioxane. Data cited in ref. 4 (relative to CS_2) are converted to the internal TMS scale using the relationshin: $\delta(TMS) = 192.8 - \delta(CS_2)$.

seen in 2, 3, and 5 result mostly from the cyclopropane anisotropy."

In the ¹³C NMR spectra of 6-2, differentiation of the C_c from the C_i signal was not easy. However, the effects of π -bonds,⁵ and particularly that of the cyclopropane ring, allow ready assignment of the signals as shown in Table 1. In this case, the upfield shift of -8.0 ppm of the C signal from δ to Z is smaller than that observed from 4 to 5; this fact may imply a weaker steric interaction between the π electrons of the isopropylidene group and the $H_{h(endo)}$ in Z. Further, the C_{c} signals were inclined to be more easily saturated than the C_i signals in these spectra, a trend which is consistent with the assignments.³ It is interesting to note that the direction of shift of the C_c and C_i signals due to introduction of a cyclopropane or benzene ring, or a double bond into $\underline{6}$ are opposite to each other.

No.	Compounds to be compared		H	H _{b(exo)}	H b(endo)	H c(anti)	H c(syn)	н ^ч	H _{h(exo)}	H _{h(endo)}
<u>(1)≞</u>		δ _H	2.83	1.57	0.94	1.32	1.07	5 .9 3	-	-
(2)	(2)-(1)	^δ Η Δδ(ppm)	2.70 -0.13	- -	0.94 0.00	0.84 -0.48	1.11 0.04	6.32 0.39	0.75 -	1.43 -
(3)	(3)-(1)	δ _Η Δδ(ppm)	2.73 -0.10	1.29 -0.28	- -	1.67 0.35	1.76 0.69	5.64 -0.29	0.54 -	0.34 -
(<u>4</u>) a		δ _H	3.30	1.85	1.14	1.73	1.48	-	-	-
(5)	(5)-(4)	^δ Η Δδ(ppm)	3.16 -0.14	-	0.98 -0.16	1.18 -0.55	1.44 -0.04	-	0.74	1.37

Table 2.	¹ H NMR	Data in	CCI
----------	--------------------	---------	-----

^a Data taken from ref. 9.

References

- See for leading references, K. Tori and K. Kitahonoki, <u>J. Amer. Chem. Soc. 87</u>, 386 (1965); C. D. Paulter, R. S. Boikess, J. I. Brauman and S. Winstein, <u>Ibid. 94</u>, 2291 (1972).
 See for leading references, W. Nagata, T. Terasawa and K. Tori, <u>Ibid. 86</u>, 3746 (1964); S. Winstein,
- P. Carter, F. A. L. Anet and A. J. R. Bourn, Ibid. 87, 5247 (1965).
- 3. G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists," Wiley-Interscience, New York (1972); J. B. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York (1972).
- 4. J. B. Grutzner, M. Jautlat, J. B. Pence, R. A. Smith and J. D. Roberts, J. Amer. Chem. Soc. 92, 7107 (1970).
- 5. E. Lippmaa, T. Pehk, J. Paasivirta, N. Belikova and A. Plate, Org. Magn. Resonance 2, 581 (1970).
- 6. H.-J. Schneider and W. Bremser, Tetrahedron Lett. 5197 (1970).
- 7. J. B. Stothers, C. T. Tan and K. C. Teo, Can. J. Chem. <u>51</u>, 2893 (1973).
- 8. K. Tori, K. Aono, K. Kitahonoki, R. Muneyuki, Y. Takano, H. Tanida and T. Tsuji, Ibid. 2921 (1966).
- 9. K. Tori, K. Aono, Y. Hata, R. Muneyuki, T. Tsuji and H. Tanida, Ibid. 9 (1966).